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Physics Modeling of The Dam-Break Problem (One-Dimensional) 
 

Abstract 
In modeling dam-break floods in natural channels, the practicing engineer must decide whether to use a 
one-dimensional (1D) or a two-dimensional (2D) numerical model. Here in the examination of what 
might be considered a 2D problem, it is clearly illustrated that a 1D formulation provides an excellent 
solution. The solution is based on a formulation of the St.-Venant equations developed for rectangular 
channels of varying widths, ... 

DamBreak++ Physics Simulator 

We are going to give an example of how to program a physics simulator using our programming 
environment or framework. The physics simulator that we are going to program will simulate the wave 
propagation (nonlinear flow with shocks) in the so-called dam break problem in a horizontal channel, 
which is a classical problem in fluid mechanics and is motivated by numerous applications in 
environment and industrial processes. This classical test case is considered a benchmark for comparison 
of the performance of numerical schemes specially designed for discontinuous transient flow. Although 
defined by the system of homogeneous shallow water equations for the ideal case of a flat and 
frictionless channel of unit width and rectangular cross section (known analytical solution), it is widely 
considered a standard test case for validation of schemes.  

Problem description (initial condition) 

A rectangular column of water, in hydrostatic equilibrium, is confined between two walls. At the 
beginning of the calculation the right wall is removed, and the water is allowed to flow out to the 
horizontal wall. The initial setup of the dam-break problem is shown in the figure below. 
 

 

Key Concepts of our application 

This phenomenon is best described by the equations of St-Venant (one-dimensional). We need to solve 
a set of equations by numerical method, conservative finite difference method. The problem consists of 
evaluating a discrete equation on each cell, these equations are in a conservative form, which means 
that the variation of state variable inside a cell depends only on the fluxes (in/out).  
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Discretization  

Main concept of discretization (transformation from continuum to discrete space).           
➢ Global discretization concept can be characterized by three features: 

• The domain of the problem is represented by a collection of simple domains, called 
cell. In the 1-D case the domain [a,b] of the equation is discretized as a series of points 
x_i, i=0,..., N,N-1 where the solution “w” of the equation is discretized as 

• Over the cell, the physical process is approximated by functions of desired type 
(polynomials or otherwise), and an algebraic equation relating physical quantities at 
selective points, called nodes, of the element are developed 

• The discretized equations are constructed over each cell 
 

➢ Space discretization concept  
 Space discretization consists of setting up a mesh or a grid by which the continuum of space is 
replaced by a finite number of points where the numerical values of the variables will have to be 
determined. 

 

➢ Time Discretization concept 
The time discretization can be categorized into 2 types: Explicit/implicit time stepping. In the 
case of explicit scheme unknown variable at the current time level depends on the previous 
time level. Implicit schemes need to solve a linear/non-linear system of the type of Ax=b. More 
than one set of variables are unknown at the same time level.  
 

➢ Discrete representation concept  
Once the mesh has been defined the equations can be discretized, leading to the transformation 
of the differential or integral equations to discrete algebraic operations involving the values of 
the unknowns at the mesh points. The basis of all numerical methods consists of this 
transformation of the physical equations into an algebraic, linear, or non-linear, systems of 
equations.  
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Requirements Definition 

We want this system to be flexible, especially regarding the following features:  

 

➢ It shall be possible to change the numerical method we use  

We may have several varied reasons for wanting to change the numerical method. The 
numerical method yields wrong answers for the problem. This includes unstable solutions, 
solutions that are mathematically correct but physically incorrect, or solutions that are not 
accurate enough. Another reason for changing the method is efficiency.  
 

➢ It shall be easy to construct a program that solves the Dam-Break Problem  

We stress the ability to build a physical algorithm quickly by using already developed 
components, by writing a new algorithm and adding it to the simulation. Moreover, we require 
that the system should be easily extendible. It is not enough if we can solve a predefined set of 
problems with a predefined set of solution methods. A user shall be able to describe recent 
problems, or new solution methods, and add these to the system. This is particularly useful if, 
for instance, the user develops a new numerical method and wants to compare this method 
against other methods.  
 

➢ The system shall be flexible. Components shall be changeable  

All pieces of the physical algorithm (solve numerically the PDE) shall easily exchangeable. 
Particularly, it is easy to switch between different implementations of the explicit integrator, or 
to switch between a flux algorithm (or numerical scheme). When validating numerical schemes, 
it would be nice to mix different alternatives and compare. 
 

➢ It shall be easy to extend the system with new components  

The flux algorithm could be implemented with a Godunov-type scheme or with an ENO flux 
extrapolation. We need to set a high-level abstraction which identify (represent) the key 
concepts of the application and let the specific (detail) to subclass;  
 

Use Case Diagram 

There are several things that should be tracked during the simulation. The simulation should 

record and report the wave's position, velocity, and acceleration. It should also calculate the 

wave's kinetic, potential, and total energies and report them. Lastly, the simulation should report 

the maximum height achieved by the wave. 
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Class Diagram 

The abstractions presented above are now expressed in the UML language called class diagram. 

Central to the UML notation is the concept of class data. A class is an abstract, user-defined 

description of a type of data. It identifies the attributes of the data and the operations that can be 

performed on instances (i.e., objects) of the data. This modeling technique allows description of 

a system using the same terminology as the corresponding real-world objects and their associated 

characteristics.  

.  
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.  

The four interfaces shown here are the ones that each developer intending to use the Framework 

will have to provide implementations for. 

The following steps outline how to develop a simulation using the Framework 

The names of each interface are self-explanatory. The IPhysicalConfiguration class 
implementation is meant to set up the initial conditions of the simulation. In the sample 
application it sets the sections initial water elevation and discharge. The Physics Simulator uses 
the IPhysicalAlgorithm class implementation to numerically integrate the equations governing 
the simulation. In the sample application the Runge-Kutta algorithm is implemented for the 
Shallow-water equations. The IPhysicalMeasurement class implementation dictates what 
physical quantities will be periodically measured. The IFinalReport is provided so that summary 
statistics and final calculations can be reported to the user in a plain text format. 

 

Other types of the DamBreak++ library is presented in the diagram below. 
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scalarField/GridLattice class (finite difference discretization) Represent the grid 
(discretization parameters finite difference). This class represents the spatial discretization key 
concept described above. It holds the parameters of the spatial discretization that will be used 
by the scalar field, which strongly depend on the discretization. 

ExplicitIntegrator Numerical integration (explicit time stepping). Also, time stepping can be 

achieved by different algorithm, Runge-Kutta of 2nd order, …  up to many orders approximation 

(Two-steps family).  

Riemann Solver 

In the problem that we are interested in, we need to approximate the numerical flux at cell-

interface by some algorithm, for example, we can choose to solve it by a Riemann solver, or we 

can use some extrapolation method (ENO flux extrapolation). Numerical algorithm to solve the 

problem taking account the physics, numerical treatment of each tem of the equation 
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Sequence Diagram 

Sequence diagram belongs to the behavior diagram. It shows the calls that are made to the 

objects. The sequence diagram is used primarily to show the interactions between objects in the 

sequential order that those interactions occur. One of the primary uses of sequence diagrams is in 

the transition from requirements expressed as use cases to the next and more formal level of 

refinement. 
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Abstract 

Over the last few years, we have been migrating from a small library of numerical code originally written in C 
to C++. In this report, we present the mathematical abstractions used and how object-oriented programming 
techniques are applied for scientific software design. Finally, implementations details are provided including 
the relationship between data structure. The result is tight, readable code that is easy to maintain and extend. 
Example with Shallow water equations is drawn from our prototype C++ based environment.  
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