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Introduction 

Considerable work has been devoted to the numerical solution of the {Shallow-Water Equations} (SWE) 

not only for their inherent importance as regards modeling of many physical processes, ranging from river 

and channels flows to estuarine circulation and floods due to the dam or dike failure,  

but also, for their mathematical difficulties, namely its non-linearity can give rise to discontinuous 

solutions currently referred to as bores or jumps. In fact, the SWE constitute a nonlinear system of partial 

differential equations (in one and two dimensions) of the hyperbolic type with a nonlinear source term. 

Mathematical Model  

Conservative Form of St-Venant Equations 
 

One-dimensional open-channel flow is usually described in terms of water depth and discharge, and the 

evolution of these quantities is taken to be governed by the Saint-Venant equations, which simply express 

the conservation of mass and momentum along the flow direction.  

 

 
 

St-Venant system can be written in different form, we consider the conservative form of the equation. 

 

𝜕𝑡 𝑼 +  𝜕𝑥𝑭(𝑼) = 𝑮        (1) 

where 

U = (
𝐴
𝑄

) 

F =  (
𝑄

𝑄2/𝐴 +  𝑔𝐼1
) 

G =  (
0

𝑔𝐼2 +  𝑔𝐴(𝑆𝑓 − 𝑆𝑏)) 

 

with F flux tensor and G source terms. Other variables are the following 
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• U: state vector of the state variables, respectively wetted area and discharge of section flow 

• F : physical flux, convective and pressure 

• Sf: friction term expressed by the Manning formula  

• Sb: bottom slope term expressed as derivative of the bathymetry 

• A: wetted cross-section area which depends (x,h(x,t)) 

• g: acceleration of gravity 

• 𝑰𝟏: pressure term given by  ∫ (ℎ(𝑥)  −  𝜗)𝜎(𝑥, 𝜗) 𝑑𝜗
ℎ(𝑥)

0
 

• 𝑰𝟐: and given by  ∫ (ℎ(𝑥)  −  𝜗) [
𝜕𝜎(𝑥,𝜗)

𝜕𝑥
] 𝑑𝜗

ℎ(𝑥)

0
 section width variation along x 

with h water depth, 𝜎 width for a fixed depth and 𝜗 depth integration variable along y axis. 

 Numerical Method  

Finite Volume Discretization 

 A conservative finite difference method is used to solve these equations. The domain of the problem is 

represented by a collection of simple domains, called cell. In the 1-D case the domain [a,b] of the 

equation is discretized as a series of points x_i, i=0,...,N-1 where the solution "w" of the equation is 

discretized as. The problem consists of evaluating a discrete equation on each cell, the physical process is 

approximated by functions of desired type (polynomials or otherwise), and an algebraic equation relating 

physical quantities at selective points, called nodes, of the element are developed. 

The discretized equations are constructed over each cell, these equations are in a conservative form, 

which mean that the variation of state variable inside a cell depend only on the fluxes (in/out).  

 

 

                                    Piecewise linear function in each cell  
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Time and Spatial Discretization 

The framework contains basic building blocks for the numerical solution of the differential equation of 

ODE type: 

𝑈𝑡 =  𝐿∆(𝑈; 𝑡)                        (2) 

where  𝐿∆ represents the differential operator in space i.e., one which does contain spatial derivative  

𝐿∆  =  𝜕𝑥𝐹 − ∆𝑡 𝑆 − ∆𝑡 𝑃      (3) 

and  𝑈𝑡 is the time derivative of the solution U. Writing equation in the above form allows us to 

implement separately the discretization of the differential operator 𝐿∆ and the time scheme used for the 

evolution of the solution. This is called Method-of-lines (sometime semi-discrete). 

 
MUSCL Reconstruction 

Below the graph show the process of reconstruction of the state variables at the interface. 

 

 

 

Slope Limiter 
 

Since we are modeling mathematical function that have strong gradient (peak function), we need to use 

some technique to limit the slope of the function (called a slope limiter) thus to avoid spurious 

oscillations. There are many slopes limiter function, one of the most popular is the “minmod” function. It 

takes the minimum of adjacent gradient (of each cell) 
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Godunov-Type Scheme 

The Godunov-type approach use either exact or approximate Riemann solutions between two adjacent 

cell to calculate the flux through the interface between them. The Riemann problem is a particular initial 

value problem (IVP), which consist of a conservation law or a system of conservation laws with a 

discontinuous initial solution. 

Explicit Finite Difference Scheme (discretized equations) 

Discrete representation of the numerical scheme that we used to solve the St-Venant equations. A 

conservative discretization is used and is expressed as follow:   

𝑈𝑖
𝑛+1 = 𝑈𝑖

𝑛 –  λ {Fi+1/2
n −  Fi−1/2

n } −  ∆t Si  ∆𝑡 𝑃𝑖   (4) 

where 𝐹𝑖±1/2is the numerical flux of the state variables U and S represent source terms (friction and 

bottom). Friction terms are evaluated according to the Manning formula. A finite volumes solver is used 

to integrate the simplified 1D Shallow-Water Equations (SWE) written in conservative form of unsteady 

open channel flow. This integration technique forms the basis of what is known as the finite volume 

method. The specific difference between various finite volume schemes is the way in which they 

approximate the interface convective flux 𝐹𝑖±1/2. This method can reproduce the discontinuities of a 

flow regime variations without incurring instabilities of the solution. 


